Redox 1

1. Give the oxidation number of the following ions:

a. H^+ **b.** CI^- **c.** Ag^+ **d.** S^{2-} **e.** Mg^{2+} **f.** Mn^{4+} **g.** Sr^{2+} **h.** AI^{3+} **i.** K^+ **j.** F^-

2. By referring to your periodic table, predict the oxidation number of these elements when they form ions:

a.I b.Sn c.C d.Li e.B f.O g.Ba h.Rb i.Si j.Br k.Be

- **3.** Examine each of the following reactions and decide which are `redox' reactions. Explain your choice:
 - **a.** Cu $_{(s)}$ + Cl_{2 (g)} \rightarrow CuCl_{2 (s)}
 - **b.** NaOH (aq) + HNO_{3 (aq)} \rightarrow NaNO_{3 (aq)} + H₂O (I)
 - c. $MnO_{2 (s)} + 4HCI_{(aq)} \rightarrow MnCI_{2 (aq)} + 2H_2O_{(I)} + CI_{2 (aq)}$
 - **d.** $CuO_{(s)}$ + $H_2SO_{4(I)}$ \rightarrow $CuSO_{4(aq)}$ + $H_2O_{(I)}$
 - e. $2C_2H_{2(g)}$ + $5O_{2(g)}$ \rightarrow $4CO_{2(g)}$ + $2H_2O_{(g)}$
- 4. Work out the oxidation number of the first element in each of the following compounds:

a. PbO ₂	b. ZnO	c. SF ₆	d. Fe ₂ O ₃	e. MnO	f. Cr(NO ₃) ₃	g. NiCO ₃
h. PCl ₃	i. Cu ₂ SO ₄	j. V ₂ O ₅	k. N ₂ O	I. FeS	m. SiCl ₄	n. Hg₂S

- **5.** There are 3 metals in the above problems that showed *variable valency* (or more than one oxidation number other than zero). Find them and give their oxidation states. Where are they positioned in the periodic table?
- **6.** Complete these sentences:

Oxidation is ______ of electrons, while ______ is gain (OILRIG). When carbon is burnt in oxygen, the carbon is ______ and the oxygen is ______.

Carbon's O.N. (oxidation number) changes from _____ to ____, while oxygen's changes from _____ to _____. Because oxygen is doing the oxidising, we call it the ______ agent. Carbon is therefore the ______ agent.

Oxidation numbers and Redox Answers

1. Give the oxidation number of the following ions:

Redox I

a. +1 b. -1 c. +1 d. -2 e. +2 f. +4 g. +2 h. +3 i. +1 j. -1

2. By referring to your periodic table, predict the oxidation number of these elements when they form ions:

a. -1 b. +4 c. +4 d. +1 e. +3 f. -2 g. +2 h. +1 i. +4 j. -1 k. +2

- **3.** Examine each of the following reactions and decide which are `redox' reactions. Explain your choice:
 - **a.** Cu changes to Cu²⁺ & Cl changes to Cl
 - **b.** No changes in oxidation numbers not a redox reaction.
 - **c.** O⁻ changes to O²⁻ & Cl⁻ changes to Cl
 - d. No changes in oxidation numbers not a redox reaction.
 - **e.** O changes to $O^{2-} \& C^{-}$ changes to C^{4+}
- 4. Work out the oxidation number of the first element in each of the following compounds:

a. 2+	b. 2+	c. 6+	d. 3+	e. 2+	f. 3+	g. 2+
h. 3+	i. 1+	j. 5+	k. 1+	I. 2+	m. 4+	n. 1+

5. Fe 3+, Fe 2+, Cu 2+, Cu 1+, Mn 4+, Mn 2+, All transition metals

6. Complete these sentences:

Oxidation is loss of electrons, while reduction is gain (OILRIG). When carbon is burnt in oxygen, the carbon is oxidised and the oxygen is reduced.

Carbon's oxidation number changes from 0 to +4, while oxygen's changes from 0 to -2. Because oxygen is doing the oxidising, we call it the oxidising agent. Carbon is therefore the reducing agent.