Steps

- **1.** Write a balanced equation
- 2. Find the number of moles of the known substance
- 3. Use the balanced equation to find the number of moles of the unknown substance
- 4. Find the concentration of the unknown substance

Example 1

20 mL of sodium hydroxide solution was titrated with 16 mL of 0.125 molL⁻¹ nitric acid using phenolphthalein indicator.

¹NaOH + HNO₃ \rightarrow NaNO₃ + H₂O ⁴c = c= 0.125 mol L⁻¹ V = 0.0200L V= 0.0160L ³n = 0.00200 mol $^{2}n = 0.125 \times 0.016$ = 0.00200 mol \checkmark

Same due to stoichiometry

Example 2

25 mL of Sodium Hydroxide solution was titrated with 0.173 molL⁻¹ Sulfuric Acid using phenolphthalein indicator. It took 19.1mL of acid for the reaction to reach endpoint. What is the [] of NaOH?

¹2NaOH + H₂SO₄ \rightarrow Na₂SO₄ + 2H₂O ⁴c = 0.264 molL⁻¹ c= 0.173 mol L⁻¹ V = 0.0250L V= 0.0191L ³n = 0.00661 mol $^{2}n = 0.173 \times 0.0191$ = 0.00330 molx2 due to stoichiometry