Thermo chemical Principles: Heat Transfer Reactions

During a chemical reaction, atoms in reactants are rearranged into products with different heat energies (enthalpy).

2 situations can arise depending upon the relative heat energy of the reactants and products

1. Exothermic Reactions:

Total heat energy of products is less than energy of reactants.

- Energy has been released as **heat**
- Temperature of surroundings increases
- Bond making process
- Examples
 - physical changes of state
 - gas \rightarrow liquid,
 - liquid \rightarrow solid
 - $gas \rightarrow solid$
 - \circ chemical reactions:
 - neutralization
 - combustion
 - respiration
 - precipitation

2. Endothermic Reactions

Total heat energy of products is greater than energy of the reactants

- Heat energy has been **absorbed**
- Temperature of surroundings decreases
- Bond breaking process
- Examples
 - physical changes of state
 - liquid \rightarrow gas,
 - solid \rightarrow liquid
 - solid \rightarrow gas (sublimation)
 - Chemical reactions:
 - photosynthesis

Enthalpy (H)

- heat content of a substance) •
- When heat is released/absorbed in a reaction, the enthalpy (heat content) of reactants • and products must be different

Enthalpy change (ΔH)

• loss or gain of heat energy in a reaction.

 $\Delta_r H =$

- The amount of energy released / absorbed depends on the **amount** of reagents involved.
- Unit = kJ (kilojoules) or kJ mol⁻¹(kilojoules per mol)

 ΣH_p Enthalpy Sum of Enthalpy Sum of Enthalpy Change for of Products of Reactants a reaction

 ΣH_r

Exothermic Reactions: $\Delta H = negative$

• products have less energy than reactants

Endothermic Reactions: $\Delta H = positive$

• products have more energy than reactants

Activation Energy

Minimum amount of energy required to initiate a chemical reaction.

The minimum energy required to break the bonds of reactants so that a reaction can proceed. For this to occur, energy must be **absorbed**

Then new bonds form as products are created. Energy is **released** as this happens.

The ΔH for the reaction is thus the net result of energy absorbed and released.