What does 'equal amounts' mean in the following reaction?
$\mathrm{Fe}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})} \rightarrow \mathrm{FeS}_{(\mathrm{s})}$

- Mass?

No

- Volume?

No

- Atoms?

Yes

Relative Atomic Mass (A_{r})

"The average mass of all the atoms of an element compared with the mass of the Carbdn 12 Isotope which is defined as having a mass value of 12.000 "

Relative atomic mass is the atomic mass number that we find on the periodic table. A_{r} is a ratio. It has no units

Relative Molar Mass ($\mathbf{M r}_{\mathbf{r}}$)

"The mass of a molecule compared with the mass of the carbon 12 isotope.
This is obtained by finding the sum of the relative atomic masses of all the individual atoms in a molecule"

Examples.
$\mathrm{A}_{\mathrm{r}}(\mathrm{H})=1, \mathrm{~A}_{\mathrm{r}}(\mathrm{O})=16, \mathrm{~A}_{\mathrm{r}}(\mathrm{C})=12$

- $\mathrm{M}_{\mathrm{r}}\left(\mathrm{H}_{2} \mathrm{O}\right) \quad=2 \times \mathrm{A}_{\mathrm{r}}($ Hydrogen $)+1 \mathrm{xA}_{\mathrm{r}}($ Oxygen $)$

$$
=(2 \times 1)+16
$$

$$
=18.0
$$

- $\mathrm{M}_{\mathrm{r}}\left(\mathrm{CO}_{2}\right)=1 \times \mathrm{A}_{\mathrm{r}}($ Carbon $)+2 \mathrm{x} \mathrm{A}_{\mathrm{r}}($ Oxygen $)$

$$
=12+(2 \times 16)
$$

$$
=44.0
$$

Avogadro's Number (6.02×10^{23})

The mass number of hydrogen is 1 and oxygen is 16 .
Therefore, in $\mathbf{1}$ gram of hydrogen there is the same number of atoms as in $\mathbf{1 6}$ grams of oxygen.

In 4 grams of hydrogen there is the same number of atoms as in 64 grams of oxygen.
But just how many atoms is this?

1 g of H	$=$	$\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ atoms	
16 g of O	$=$	$\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ atoms	
4 g of H	$=$	$4\left(\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}\right)$	$=24.08 \times 10^{23}$ atoms
64 g of O	$=4\left(\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}\right)$	$=24.08 \times 10^{23}$ atoms	

" 1 mole (' n ') is the number of carbon atoms in 12.000 grams of carbon 12.
1 mol of anything has 6.02×10^{23} atoms"
The unit of moles is ' mol '

Avogadro's number tells you the number of atoms in 1 mol of a substance.
1 mol of hydrogen weighs 1 g and has 6.02×10^{23} atoms
4 mol of hydrogen weighs 4 g and has 24.08×10^{23} atoms

1 mol of chlorine weighs 35.5 g and has 6.02×10^{23} atoms
2 mol of chlorine weighs 71 g and has 12.04×10^{23} atoms
4 mol of chlorine weighs 116.5 g and has 24.08×10^{23} atoms

Show 1 mole of a few substances (in jars)

