Stoichiometry

What does 'equal amounts' mean in the following reaction? Fe $_{(s)}$ + S $_{(s)}$ \rightarrow FeS $_{(s)}$

•	Mass?	No
-	W - 1 9	NT-

- Volume? NoAtoms? Yes
- Atoms? Te

Relative Atomic Mass (Ar)

"The average mass of all the atoms of an element compared with the mass of the Carbon 12 Isotope which is defined as having a mass value of 12.000"

Relative atomic mass is the <u>atomic mass number</u> that we find on the periodic table. A_r is a ratio. It has no units

Relative Molar Mass (Mr)

"The mass of a molecule compared with the mass of the carbon 12 isotope. This is obtained by finding the sum of the relative atomic masses of all the individual atoms in a molecule"

Examples.

 $A_r(H) = 1, A_r(O) = 16, A_r(C) = 12$

•	M_r (H ₂ O)	$= 2 \text{ x } A_r (\text{Hydrogen}) + 1 \text{ x } A_r (\text{Oxygen})$
		$= (2 \times 1) + 16$
		= 18.0
•	M _r (CO ₂)	$= 1 \text{ x A}_{r} (Carbon) + 2 \text{ x A}_{r}(Oxygen)$
		$= 12 + (2 \times 16)$
		= 44.0

Avogadro's Number (6.02 x 10²³)

The mass number of hydrogen is 1 and oxygen is 16.

Therefore, in **1 gram of hydrogen there is the same number of atoms as in 16 grams of oxygen.**

In 4 grams of hydrogen there is the same number of atoms as in 64 grams of oxygen.

But just how	w many a	atoms is this?	
1 g of H	=	6.02 x 10 ²³ atoms	
16 g of O	=	6.02 x 10 ²³ atoms	
4 g of H	=	4(6.02 x 10 ²³)	$= 24.08 \text{ x} 10^{23} \text{ atoms}$
64 g of O	=	4(6.02 x 10 ²³)	$= 24.08 \text{ x } 10^{23} \text{ atoms}$

```
"1 mole ('n') is the number of carbon atoms in 12.000 grams of carbon 12.
1 mol of anything has 6.02 \ge 10^{23} atoms"
The unit of moles is 'mol'
```

Avogadro's number tells you the number of atoms in 1 mol of a substance.

1 mol of hydrogen weighs 1 g and has 6.02×10^{23} atoms

4 mol of hydrogen weighs 4 g and has 24.08 x 10²³ atoms

1 mol of chlorine weighs 35.5 g and has 6.02×10^{23} atoms

2 mol of chlorine weighs 71 g and has 12.04×10^{23} atoms

4 mol of chlorine weighs 116.5 g and has 24.08×10^{23} atoms

Show 1 mole of a few substances (in jars)