"A solution whose concentration is accurately known"

Made by

- Dissolving a known mass of a substance in a volumetric flask. E.g. 1.00 L of a 2.00 mol L⁻¹ standard solution of sodium hydroxide (NaOH), requires 2.00 mol of NaOH (80.0g), dissolve it in some distilled water and make it up to a volume of 1 L in a volumetric flask.
- Making up a rough solution and standardizing it in a titration reaction with a solution of a known concentration

Example: Finding the concentration of a standard solution

Calculate the concentration of a solution of sodium carbonate made by dissolving 23.9 g of Na_2CO_3 in water and made up to 250 mL. $M(Na_2CO_3) = 106.0$ g mol⁻¹

m	= 23.9 g	c	$= 0.902 \text{ mol } \mathrm{L}^{-1}$
М	$= 106.0 \text{ g mol}^{-1}$	V	= 0.250 L
n	= 0.225 mol	n	= 0.225 mol

Making up Solutions

Example 1

How many moles of NaOH are contained in 25.0 mL of 0.100 mol L⁻¹ sodium hydroxide solution?

	= 0.00250 mol
n(NaOH)	= cV = 0.100 mol L ⁻¹ x 0.025 L
V(NaOH)	= 0.025 L
c(NaOH)	$= 0.100 \text{ mol } \text{L}^{-1}$

Example 2

What mass of potassium permanganate (KMnO₄) is required to make up 100 mL of a 0.0200 mol L^{-1} solution? M(KMnO₄) = 158.0 g mol⁻¹

n(KMnO4)	= 0.00200 mol	n(KMnO ₄)	= 0.00200 mol
V(KMnO ₄)	= 0.100 L	M(KMnO ₄)	$= 158.0 \text{ g mol}^{-1}$
c(KMnO ₄)	$= 0.0200 \text{ mol } \text{L}^{-1}$	m(KMnO ₄)	= 0.316 g

Solution Calculations

We have already used the relationship m = nM combined with a balanced equation to calculate the mass of substances.

We can use n = cV in the same way

Steps

- **1.** Write a balanced equation
- 2. Find the number of moles of the known substance
- 3. Use the balanced equation to find the number of moles of the unknown substance
- 4. Find the mass / volume / concentration of the unknown substance

Example

What volume of 2.00 mol L^{-1} HCl solution will react with 0.430 g of magnesium ribbon

	¹ Mg	+	$2\text{HCl} \rightarrow$	MgCl ₂	+	H_2
	m(Mg)	= 0.430g	c(HCl) = 2.00	mol L ⁻¹		
	M(Mg)	$= 24.3 \text{ g mol}^{-1}$	4 V(HCl) = 0.0354 mol / 2.00 mol L ⁻¹ = 0.0177 L (3sf)			ţ
,	² n(Mg)	= 0.43 g / 24.3 g mol ⁻¹ = 0.0177 mol	³ n(HCl)= 0.03	354 mol		

 $\mathbf{x2}$ due to stoichiometry