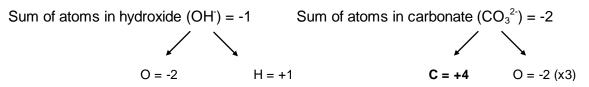

Rules for Assigning Oxidation Numbers


- 1. The oxidation number for an atom of any free (uncombined) element or element in self combination is ZERO (0).
 - \circ Na, Ca, C = 0.
 - H in H₂, O in O₂, P in P₄ = 0.
- 2. Group 1 (Alkali metals) in compounds / ions = +1.
 - Na in NaH = +1, Li in $Li_2SO_4 = +1$
- **3.** Group 2 (Alkali Earth metals) in compounds/ions = **+2**.
 - Ca in CaH₂ = +2, Mg in MgSO₄ = +2
- Group 17 (Halogens) in compounds / ions = -1 unless bonded to a more electronegative element
- 5. Hydrogen in compounds / ions, H = +1.
 - H in HCl, HF, H_2O , $OH^- = +1$,
 - Exception: **H = -1** when bonding with Group 1 or Group 2 metals

e.g. NaH, LiH, CaH₂, MgH₂

- 6. Oxygen in compounds/ions = -2
 - O in Na₂O, OH⁻, SO₄²⁻ = -2,
 - Exception: O = -1 in peroxides (H_2O_2)
- 7. Sum of oxidation numbers of all atoms in the formula for a compound is ZERO.

- 8. Sum of oxidation numbers of all atoms in the formula of an ion / complex ion is equal to charge on that ion.
 - Na in Na⁺ = +1, O in O^{2-} =-2

9. Negative oxidation numbers in compounds of two unlike atoms is assigned to the more electronegative atom.

CCI₄	C = +4 Cl = -1	SF ₆	S = +6	F = -1
CS ₂	C = +4 S = -2	CIO ₂	Cl= +4	O = -2