Assessment Schedule – 2009

Chemistry: Describe oxidation-reduction reactions (90311)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)(i)	Brown / yellow / red-brown / yellow-brown / orange-brown (solution) turns to colourless.	TWO of: Observations for	Observations for	Observations for
(ii) (iii)	Brown I_2 / iodine forms colourless I^- / iodide. $I_2 + 2e^- \rightarrow 2I^-$	FOUR out of SIX FOUR colours correct. colour linked	FOUR out of SIX colours correctly linked to species.	FIVE out of SIX colours correctly linked to species
(b)(i)	Orange / yellow-orange / orange-yellow paper turns to green / blue / blue-green.			(with no spectator ions).
(ii)	Orange $Cr_2O_7^{2-}$ / dichromate turns to green Cr^{3+} / chromium ions / chromium III / chromic.		AND	AND
(c)(i)	Purple turns to colourless / pale pink / (white (paper))			
(ii)	Purple MnO_4^- / permanganate turns to colourless Mn^{2+} / manganese ions / manganese II /	EITHER	EITHER	Explanation of
(iii)	manganous.	oxidant causes	oxidant causes	oxidant as causing oxidation
	An oxidant causes the oxidation of another species.	another species OR	another species OR	of another species
	Oxidant is reduced / removes / receives / accepts electrons (from other species).	Oxidant is reduced OR	Oxidant is reduced	AND is reduced AND linked to both MnO_4^- and
	$MnO_4^- / KMnO_4$ (is the oxidant) as it (MnO_4^-) gains electrons from / oxidises the SO ₂ . The MnO_4^- is reduced by SO ₂ .	MnO_4^- oxidises the SO_2	AND linked to either MnO_4^- or SO_2 .	SO ₂ .
		ONE out of the	AND	AND
(iv)		THREE half equations in (a) or (c) balanced correctly (but may be identified incorrectly).	TWO out of THREE half- equations balanced correctly.	ALL of (c) (iv) equations balanced correctly.
	$SO_2 + 2H_2O \rightarrow SO_4^{2-} + 4H^+ + 2e^-$			
	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$			
	$2MnO_4^- + 2H_2O + 5SO_2 \rightarrow 2Mn^{2+} + 5SO_4^{2-} + 4H^+$	2A	3M	3Е

TWO (a)	(i) 0 (ii) –3 (iii) –3 (iv) +1	TWO oxidation numbers correct – evidence may be in any part of the question	THREE oxidation numbers correct – evidence may be in any part of the question	THREEoxidation numbers correct– evidence may be in any part of the question
		AND	AND	AND
(b)(i) (ii)	NO ₂ ⁻ + H ₂ O → NO ₃ ⁻ + 2H ⁺ + 2e ⁻ This (nitrification reaction) is an oxidation reaction because electrons are lost, or the oxidation number of N increases from +3 (in NO ₂ ⁻) to +5 (in NO ₃ ⁻). (Nitrogen fixation): N ₂ → NH ₄ ⁺ is a reduction reaction because electrons are gained OR the oxidation number of N decreases from 0 (in N ₂) to -3 (in NH ₄ ⁺). N ₂ + 8H ⁺ + 6e ⁻ → 2NH ₄ ⁺ (Other nitrification reaction): NH ₄ ⁺ → NO ₂ ⁻ is also oxidation reaction because electrons are lost OR the oxidation number of N increases from -3 (in NH ₄ ⁺) to +3 (in NO ₂ ⁻). NH ₄ ⁺ + 2H ₂ O → NO ₂ ⁻ + 8H ⁺ + 6e ⁻ (Denitrification): NO ₃ ⁻ → N ₂ is reduction reaction because electrons are gained OR the oxidation number of N decreases from +5 (in NO ₃ ⁻) to 0 (in N ₂). 2NO ₃ ⁻ + 12H ⁺ + 10e ⁻ → N ₂ + 6H ₂ O	Describes electron loss or change in oxidation number OR ONE reaction correctly identified as oxidation or reduction	Explains electron loss or increase in oxidation number from 3 to 5 AND TWO reactions identified as oxidation or reduction with a correct explanation in terms of transfer of electrons or change in oxidation number or loss / gain of hydrogen or oxygen	Explains electron loss or increase in oxidation number from 3 to 5 AND All FOUR reactions are discussed. Reactions are identified as oxidation or reduction with a correct explanation in terms of transfer of electrons or change in oxidation number or loss / gain of hydrogen or oxygen
		AND ONE half- equation correct.	AND TWO half- equations correct.	AND THREE half- equations correct.
		3A	4M	4E

THREE (a)(i)	 + electrode is the anode – electrode is the cathode 	Description of FOUR of:	Correct explanation of reaction occurring at one electrode	Discussion demonstrates understanding of the reactions at
(ii)	• Cathode: $Ag^+ + e^- \rightarrow Ag$ Anode: $Ag \rightarrow Ag^+ + e^-$	correctly labelled OR Correct balanced	 correct half- equation	anode and cathode including movement of
(b)	 At the negative electrode / cathode positive silver ions / cations / Ag⁺ (from the electrolyte solution) will move / be attracted to 	half-equation (may be incorrectly identified)	 movement of one species redox process observation 	species, redox processes, observations and half equations.
•	 the negative electrode / cathode / trophy. reduction of Ag⁺ to Ag a silver / grey deposit / solid / coating forms (on the trophy) 	OR Ag ⁺ move to cathode/ negative	OR Any SIX of	
		electrode	Achievement	
	At the positive electrode / anode	UR Deduction at	points.	
	 Ag / silver reacts / becomes fons and moves into the electrolyte solution. oxidation of Ag to Ag⁺ the silver / Ag metal becomes smaller. 	cathode / negative electrode OR Ag ⁺ are reduced		
	(Electrons are produced at the positive electrode / anode and move toward the negative electrode / cathode through the external circuit / wire).	OR Silver / grey / solid deposited on cathode / trophy		
		OR		
		Oxidation at anode / positive electrode OR Ag is oxidised		
		OR		
		Ag ⁺ move into electrolyte / toward cathode		
		OR		
		Anode becomes smaller.		
		1A	1 M	1E

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
2 A	2 M + 1 A	2 E + 1 A
	OR	OR
	1 M + 2 A	1 E + 2 M

NOTE:

Lower case **a**, **m**, **e** may be used throughout the paper to indicate contributing evidence for overall grades for questions.

Only upper case A, M and E grades shown at the end of each full question are used to make the final judgement.