You need to mention:

1. Whether individual bonds within a molecule are polar or not. This will be due to electronegativity differences between atoms in the bond
2. The 3-D arrangement of atoms in a molecule.

Is it

- Tetrahedral (no lone pairs)
- Trigonal pyramid (always has a lone pair)
- Triangular planar
- Bent (always has 1 or 2 lone pairs)
- Linear (can have lone pairs)

3. Whether or not the polar bonds in the molecule are symmetrical

- If it is symmetrical, polar bonds can cancel making molecule non-polar
- If it is not symmetrical (due to lone pairs of electrons on central atom or different atoms bonded to central atom), the effect of polar bonds is not cancelled and molecule is polar

Example: Explain why $\mathbf{N F}_{3}$ is a polar molecule (Excellence Answer)

There are 3 polar $\mathrm{N}-\mathrm{F}$ bonds in NF_{3} due to difference in electronegativity of N and F.

There are 4 regions of negative charge about the central N atom (3 bonding, 1 nonbonding). These regions repel into a tetrahedral arrangement. However, the shape made by the 3 bonds is trigonal pyramid.

This arrangement of polar bonds is not symmetrical. The polar bonds do not cancel out, therefore molecule is polar.

Task:

Discuss the polarity of $\mathrm{H}_{2} \mathrm{~S}$

