ZAssessment Schedule - 2013
Chemistry: Demonstrate understanding of the properties of selected organic compounds (91165)

Assessment Criteria

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding involves naming and drawing structural formulae of selected organic compounds (no more than eight carbons in the longest chain) and giving an account of their chemical and physical properties. This requires the use of chemistry vocabulary, symbols and conventions.	Demonstrate in-depth understanding involves making and explaining links between structure, functional groups and the chemical properties of selected organic compounds. This requires explanations that use chemistry vocabulary, symbols and conventions.	Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating, comparing and contrasting, or using links between the structure, functional groups and the chemical properties of selected organic compounds. This requires the consistent use of chemistry vocabulary, symbols and conventions.

Evidence Statement

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	1a	2 a	3 a	4 a	2 m	3 m	e with minor error /omis- sion /addi- tional infor- mation.	e

Appendix One: Question One (d)

Structural formula	IUPAC (systematic) name
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ or	pentanoic acid
	3-methylbut-1-ene
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	1-propanamine / 1-aminopropane (propyl amine)
$\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{OH}$ or	2-chloropropan-1-ol
$\begin{aligned} & \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ & \text { l } \\ & \mathrm{CH}_{3} \mathrm{CH}_{3} \end{aligned}$	3-methylhexane

Two	Expected Coverage			Achievement		Merit			Excellence	
(a)(i) (ii)	Correct polymer (two repeating units). Correct monomer molecule. See Appendix Two.			- (a) (i) correct. - (a) (ii) correct. - In (b) solubility of one liquid correct. - In (b) litmus colour change for amine correct - In (b) colour change with bromine water for one liquid correct.		Water used to distinguish between liquids (minor error).			In (b) a valid method that distinguishes between the liquids.	
	Water Add water to solutions will ethanamine), pent-1-ene a Litmus Use the solut water. Add r solutions. One will not litmus paper; One will turn ethanamine. Bromine wa Test the liqui water by reac bromine wat turn the oran (UV) light is with pentane pentane / no change. The 1-ol. (Accept that cannot be sep is outlined).	liqui in w ill not e). ned by pape he co hano us bl id no sam -ene on to for es not ange g liq and p y this	anol, 1-ol, ing in e in idly) s. n h lour tan- 1 if this			Litm distin liquid Brom to dis betwe	use uish	en sed		
NØ	N1	N2	A3	A4	M5		M6		E7	E8
No response or no relevant evidence.	1a	2a	3 a	4a	2 m		3 m	with erro sion tion	$\stackrel{\mathrm{e}}{\mathrm{e}} \mathrm{minor}$ / omis/ addial inforation.	e

Appendix Two: Question Two (a)

(i)

(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCCl}_{2}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CCl}_{2}$ or

Three E	Expected Coverage			Achievement		Merit		Excellence	
(a)(i) S	See Appendix Three.			- In (a) (i) TWO reagents correct. (a) (ii) major product with reason.		In (b): For the substitution reaction forming chlorobutane		In (b) elaborates all THREE reactions fully.	
(a)(ii) $\begin{aligned} & \text { M } \\ & \text { hy } \\ & \text { hy }\end{aligned}$	Major product - the carbon with the least hydrogen atoms attached loses another hydrogen atom (to form the double bond).								
	Reaction with The hydroxy chloro group The product The function chloro group Reaction with oxidation as carboxylic a The product The function carboxylic a Reaction with elimination the -OH gro are removed double bond The product The function (carbon-to-c	a sub $-\mathrm{OH}$ $\mathrm{H}_{2} \mathrm{CH}$ in th alkan d dic ol is $\mathrm{H}_{2} \mathrm{CH}$ in th trated A hy jacen a (ca $\mathrm{H}_{2} \mathrm{CH}$ in th uble	reaction. ed by a is a kane). is to a is is an om and atoms arbon) is a kene.	- In (a) diffe type - In (b) func corr - In (b) form prod	TWO ction ied. oup ect.	plus TWO following reason, fu group, fo the organ For the ox reaction f butanoic The type plus, the group, A formula product For the el reaction but-1-ene The type plus TWO following reason, fu group, fo the organ	the rect: onal a of oduct. ion ing eaction tional he ganic ct. ation ing action the rect: onal a of oduct.		
NØ	N1	N2	A3	A4	M5	M6	E7		E8
No response or no relevant evidence.	1a	2a	3a	4a	2 m	3 m		inor omis- addi- nfor- on.	e

Appendix Three: Question Three (a)

Reagent	Formula of reagent / conditions	Type of reaction
A	$\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$	addition
B	$\mathrm{PCl}_{5} / \mathrm{PCl}_{3} / \mathrm{SOCl}_{2}$	substitution
C	$\mathrm{KOH}(\mathrm{alc})$	elimination

Judgement Statement

Not Achieved	Achievement	Achievement with	Achievement

NCEA Level 2 Chemistry (91165) 2013 — page 5 of 5

			Merit	with Excellence
Score range	$0-7$	$8-14$	$15-18$	$19-24$

