Diluting Solutions

New Concentration = old concentration x <u>volume taken</u> flask volume

Example 1

A 50.0 mL sample of 2.00 mol L^{-1} HCl solution is made up to 1 L with distilled water. What is the new concentration?

New Concentration	= old concentration	X	<u>volume taken</u> flask volume
	$= 2.00 \text{ mol } L^{-1}$	х	0.0500 L / 1L
	$= 0.100 \text{ mol } \mathrm{L}^{-1}$		

Solution was diluted 20 x (i.e. is now 1/20 of the original strength)

Example 2

٠	2.86g of NaCl was made up to 100mL with distilled water	Α
•	10.0 mL of solution A was diluted to 250ml	В
•	25.0 mL of solution B was diluted to 1000mL	С
•	5.00 mL of solution C was diluted to 100mL	D

What are the concentrations of the four solutions (in $g L^{-1}$)

A 28.6g / 0.100L

 $= 28.6 \text{ g L}^{-1}$

- **B** 250 / 10 = 25 times diluted
 - $= 28.6 \text{ g L}^{-1} / 25$

 $= 1.14 \text{ g L}^{-1}$

- \mathbf{C} 1000 / 25 = 40 times diluted
 - $= 1.14 \text{ g L}^{-1}/40$
 - $= 0.0286 \text{ g L}^{-1}$
- **D** 100 / 5 = 20 times diluted

$$= 0.0286 \text{ g L}^{-1}/20$$

$$= 0.00143 \text{ g L}^{-1}$$