Calculating Enthalpy

From Experimental Data (using a calorimeter)

$$
\begin{aligned}
& \Delta H=m . s . \Delta T \\
& \Delta_{r} H=\Delta E / n
\end{aligned}
$$

$\Delta H \quad=$ change in energy (J)
$\mathrm{m} \quad=$ mass of substance (g)
$\mathrm{s} \quad=$ specific heat capacity of substance $\left(\mathrm{J} \mathrm{g}^{-1} \mathrm{C}^{-1}\right)$
$\Delta \mathrm{T} \quad=$ change in temperature $\left({ }^{\circ} \mathrm{C}\right)$

Example

50.0 mL of $2.0 \mathrm{molL}^{-1} \mathrm{NaOH}$ neutralised 50 mL of $2.0 \mathrm{molL}^{-1} \mathrm{HCl}$. The temperature of the solution rose from $21^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$. Calculate the heat of the reaction (assuming 1 mL of the solution requires 4.2 J of energy to raise its temperature by $1^{\circ} \mathrm{C}$)

$$
\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

m
$=100 \mathrm{~g}$
s

$$
=4.2 \mathrm{Jg} \mathrm{~g}^{-10} \mathrm{C}^{-1}
$$

ΔT

$$
=14^{\circ} \mathrm{C}
$$

$\Delta \mathrm{H} \quad=\mathrm{m} . \mathrm{s} . \Delta \mathrm{T}$

$$
\begin{aligned}
& =100 \mathrm{~g} \times 4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{O}^{-1} \times 14{ }^{\circ} \mathrm{C} \\
& =5880 \mathrm{~J} \\
& =5.9 \mathrm{~kJ}
\end{aligned}
$$

$\mathrm{n}(\mathrm{NaOH} / \mathrm{HCl}) \quad=\mathrm{c} \times \mathrm{V}$
$=2.0 \mathrm{molL}^{-1} \times 0.0500 \mathrm{~L}$
$=0.1 \mathrm{~mol}$
$\Delta_{r} \mathrm{H} \quad=\Delta \mathrm{E} / \mathrm{n}$

$$
\begin{aligned}
& =5.9 \mathrm{~kJ} / 0.1 \mathrm{~mol} \\
& =59 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

The temperature has increased, therefore reaction is exothermic
$\Delta_{r} \mathrm{H}$
$=-59 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Calorimeters

- A well insulated container with a thermometer
- Used to measure the heat released / absorbed in a reaction
- Reaction takes place in water (or in a chamber surrounded by water)
- The temperature of the water will either increase (exothermic as heat has been released)
- or decrease (endothermic as heat from water has been absorbed)

Coffee cup calorimeter - polystyrene is a good heat insulator.
Good for measuring enthalpy for reactions between species in
solution or to measure heats of solution

Bomb Calorimeter - used to determine heat flow for combustion reations. The heat liberated by the reation is absorbed by the bomb and surrounding water

