Calculating Enthalpy

From Experimental Data (using a calorimeter)

 ΔH = change in energy (J)

m = mass of substance (g)

s = specific heat capacity of substance $(J g^{-1} °C^{-1})$

 ΔT = change in temperature (°C)

Example

50.0 mL of 2.0 molL⁻¹ NaOH neutralised 50 mL of 2.0 molL⁻¹ HCl. The temperature of the solution rose from 21 °C – 35 °C. Calculate the heat of the reaction (assuming 1 mL of the solution requires 4.2 J of energy to raise its temperature by 1 °C)

 $NaOH_{(aq)} \ + \ HCI_{(aq)} \ \rightarrow \ NaCI_{(aq)} \ + \ H_2O_{(I)}$

m	= 100 g
S	= 4.2 J g ⁻¹ °C ⁻¹

0	- 1.2 0
ΔΤ	= 14 °C

ΔΗ	= m.s.ΔT
	= 100 g x 4.2 J g ⁻¹ °C ⁻¹ x 14 °C
	= 5880 J
	= 5.9 kJ

n(NaOH / HCI)	= c x V
	= 2.0 molL ⁻¹ x 0.0500 L
	= 0.1 mol

 $\Delta_{\rm r}$ H = Δ E / n = 5.9 kJ / 0.1 mol = 59 kJ mol⁻¹

The temperature has increased, therefore reaction is **exothermic** $\Delta_r H$ = - 59 kJ mol⁻¹

Calorimeters

- A well insulated container with a thermometer
- Used to measure the heat released / absorbed in a reaction
- Reaction takes place in water (or in a chamber surrounded by water)
 - The temperature of the water will either increase (exothermic as heat has been released)
 - o or decrease (endothermic as heat from water has been absorbed)

Coffee cup calorimeter - polystyrene is a good heat insulator. Good for measuring enthalpy for reactions between species in solution or to measure heats of solution

Bomb Calorimeter – used to determine heat flow for combustion reactions. The heat liberated by the reaction is absorbed by the bomb and surrounding water