Calculating Enthalpy from Bond Energies

 $\Delta_{\rm r}$ H = $\Delta_{\rm r}$ H (bonds broken) – $\Delta_{\rm r}$ H (bonds made)

Bond energies are a measure of the energy needed to break an intramolecular covalent bond in a molecule.

"Bond energy is the average energy required to break 1 mole of covalent bonds between 2 atoms in the gaseous state" e.g. AB (g) \rightarrow A (g) + B (g) Δ_r H = +ve

A chemical reaction is a series of bond breaking processes ($\Delta H = +ve$) and bond making processes ($\Delta H = -ve$).

We can estimate the enthalpy of a chemical reaction by adding the bond energies for bonds that break and subtracting energies for those bonds which are made.

Example

Bond energies (kJ mol ⁻¹)			
C - H	413		
C - Cl	339		
CI – CI	242		
H - Cl	431		

Calculate the heat of reaction for the following reaction given the bond energies above

 $C_2H_{6(g)} + CI_{2(g)} \rightarrow C_2H_5CI_{(g)} + HCI_{(g)} \Delta_r H^o = ?$

Answer

Bonds Broken ($\Delta H = +ve$)		Bonds Made ($\Delta H = -ve$)		
CI – CI	413	C – Cl	339	
<u>C – H</u>	242	H – Cl	431	
	655		770	

 $\Delta_r H = \Delta_r H \text{ (bonds broken)} - \Delta_r H \text{ (bonds made)}$ = 655 - 770 = -115 kJ mol⁻¹

Hint: Draw structural formula to really see how many bonds break / form