Bond Angles

The bond angle is the angle made between atoms bonded to the central atom in a molecule They are influenced by

1. Lone pairs of electrons
2. Bonding pairs of electrons
3. VSEPR Theory

- Pairs of valence electrons will repel each other to get as far apart as possible
- Lone pairs have a greater repulsive force than bonding pairs due to them being held closer to the central atom
- Bond angles are based on the shape made by all electrons distributed around the central atom

Examples

1. Discuss the bond angles of CO_{2}
CO_{2} has $\mathbf{2}$ regions of negative charge about the central C atom.
These are both bonding regions and they repel each other into a symmetrical, linear arrangement and shape.

Therefore bond angles are $\mathbf{1 8 0}^{\mathbf{0}}$.
2. Discuss the bond angles of CH_{4}
CH_{4} has 4 regions of negative charge about the central C atom.
These are all bonding regions and they repel each other into a symmetrical, tetrahedral arrangement and shape.

Therefore bond angles are the normal tetrahedral angle of $\mathbf{1 0 9}^{\mathbf{0}}$.
3. Discuss the bond angles of NH_{3}
NH_{3} has 4 regions of negative charge about the central N atom.
These repel each other into a tetrahedral arrangement.
Three of these are bonding regions, one is nonbonding, therefore the shape of the molecule is trigonal pyramidal.

The non-bonding electron pair has a greater repulsive force than bonding regions, therefore the bond angle will slightly smaller than the normal tetrahedral angle of 109°.
4. Discuss the relative bond angles of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$ has $\mathbf{4}$ regions of negative charge about the central O atom.
These repel each other into a tetrahedral arrangement.
$\mathbf{2}$ of these are bonding regions, $\mathbf{2}$ are nonbonding, therefore the shape of the molecule is bent/angular.

The non-bonding electron pairs have a greater repulsive force than bonding regions, therefore the bond angle will smaller than the normal tetrahedral angle of 109°.
$\mathrm{CH}_{2} \mathrm{O}$ has 3 regions of negative charge about the central C atom.
These repel each other into a trigonal planar arrangement.
All 3 of these are bonding regions, therefore the shape of the molecule is trigonal planar.

Therefore the bond angle will be 120°.

